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a b s t r a c t

An integral model of the deep bed filtration process has been developed. It incorporates pore and particle
size distributions, as well as the particle residence time distribution in the framework of the continuous
time random walk theory. Numerical modeling is carried out to study the factors influencing break-
through curves and deposition profiles for the deep bed filtration systems. Results are compared with a
large set of experimental observations. Our findings show that highly dispersed breakthrough curves, e.g.
those with early arrivals and large ending tails, correspond to large dispersion coefficients. For such cases
emporal dispersion
article population heterogeneity
yperexponential deposition
omparison with experiments

the elliptic equation excels the advection dispersion equation in both fitting breakthrough curves and
predicting deposition profiles related to natural or highly heterogeneous porous media. The deposition
hyperexponentiality can be caused by the following three mechanisms: particle population in connec-
tion with the distribution of the filtration coefficients, heterogeneity in connection with non-Fickian
transport, and heterogeneity in connection with the spatial distribution of the filtration coefficients. The
influence and interaction of all three mechanisms have been analyzed in numerical computations and by
comparison to several sets of experimental data.
. Introduction

Modeling suspension or colloid flow in porous media is of great
mportance to a large variety of applications, e.g. deep bed filtration,

embrane filtration, drilling mud filtration, bacteria and viruses
preading in underground water and others [1,2]. There is a consid-
rable and ongoing effort aimed at understanding the transport and
he deposition of suspended particles in porous media. Especially,
on-Fickian transport and non-exponential deposition of particles,
uch as hyperexponential and non-monotonic deposition profiles,
ttract significant interest [3–7].

The physical heterogeneity of porous media leads to non-Fickian
ehavior of the suspensions in porous media [3–6]. Recent works

ndicate that non-Fickian transport of a solute or a suspension may
e modeled more accurately by approaches based on the continu-
us time random walk (CTRW) theory compared to the classical
dvection dispersion equation (ADE) [4,5]. In the framework of
he CTRW approach A. Shapiro and P. Bedrikovetsky proposed a
acroscopic elliptic equation for non-Fickian transport in porous
edia [6,7]. Recently, the approach has been extended in order

o incorporate the distributed particles, as well as plugging of the
orous medium [8]. Compared to the conventional ADE the ellip-
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tic equation has two additional terms reflecting the distributed
residence time or flight time of the particles: the temporal dis-
persion term and the mixed dispersion term. In cases where the
particles of n different types are filtered in a porous medium, n ellip-
tic equations (plus deposition-plugging equations) are required
for description of the filtration. Continuous distributions of the
particles are approximated by discrete distributions with several
particle types, as described below.

The conventional methodology, ADE with a single filtration
coefficient, merely predicts exponentially decreasing deposition
profiles [9,10]. Many of the experimental results, on the other hand,
show hyperexponential deposition profiles or even non-monotonic
deposition profiles under some specific conditions [1,10–12].

It is believed that the heterogeneity of the particle population
or the heterogeneity of particle-medium-interaction is the main
reason for hyperexponential deposition profiles in homogeneous
porous media [10,13]. The heterogeneity of the particle population
encompasses the physical heterogeneity (size and shape) and the
physiochemical heterogeneity (surface charge and multiple energy
minima). For instance, in a deep bed filtration system which the
size exclusion mechanism dominates, the larger particles deposits

faster and correspond to larger filtration coefficients. The distri-
bution of filtration coefficients is most likely dependent on the
particle size distribution [8]. Even flow of a monodisperse suspen-
sion (uniform shape and size) in a homogeneous porous medium
under unfavorable attachment conditions is observed to result

dx.doi.org/10.1016/j.cej.2010.07.003
http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej
mailto:hy@kt.dtu.dk
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Nomenclature

ci Number of suspended particles per unit pore vol-
ume (m−3)

Ci Dimensionless suspended particle concentration
si Number of retained particles per unit volume of

porous media
Si Dimensionless retained particle concentration
t Time (s)
T Dimensionless time (pore volume)
x x coordinate in space
X Dimensionless x
Nc Number of retained particles per gram of porous

media
Nt Number of total injected particles
v Interstitial velocity of particles
u Dimensionless interstitial velocity of particles
Dx Coefficient of spatial dispersion (m2/s)
Dt Coefficient of temporal dispersion (s)
Rx Dimensionless longitudinal dispersivity
Rt Dimensionless temporal dispersivity
p Probability density function
a Coefficient in power law distribution
b Power in the power law distribution
flow Fraction of the component with low � in the

bimodal distribution
fhigh Fraction of the component with high � in the

bimodal distribution
t0 Particle injection duration (s)
T0 Particle injection duration (pore volume)
c0 Influent concentration
� Mean value
� Standard deviation
� Filtration coefficient (s−1)
� Dimensionless filtration coefficient
� Total injection time is � times the particle injection

duration
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ϕ Porosity of the porous media
�b Bulk density of the dry porous media

ometimes in a hyperexponential deposition profile, due to the het-
rogeneity of particle surface charge and second energy minimum
10,14]. Mathematically, the heterogeneity of the particle popula-
ion is described by the distribution of the filtration coefficients.
he deposition patterns may be interpreted by application of vari-
us distribution types: the log-normal distribution, the power law
istribution, the bimodal distribution and others [14,15].

In order to study how the heterogeneity of the particle popula-
ion leads to hyperexponential deposition profiles, it is important
o separate its influence from the effect of heterogeneity of porous

edia. Lots of the relevant studies focus on the physically homoge-
eous porous media, e.g. packed glass beads in the column [16–18].
ome experiments have been carried out in micro-heterogeneous
orous media, e.g. packs of natural quartz sand [19–21]. Other
xperiments adopt specially constructed porous media with het-
rogeneity on a mesoscale [5,22]. The data from pilot experiments
f mainly tracers in natural/highly heterogeneous porous media
nd porous rocks is also available [23].

In this paper, the factors controlling the deposition profiles and

he shape of breakthrough curves are systematically studied. An
ntegral model is applied. It incorporates both the distribution of
he filtration coefficients (as in Refs. [15,24]) and the distributed
article flight time (as in Refs. [6–8]). A large set of data obtained

n the experiments with homogeneous and heterogeneous porous
ring Journal 162 (2010) 974–988 975

media is compared with the results from the numerical model-
ing. Apart from the data on deep bed filtration experiments, data
on tracer injection have been used, since tracers may be consid-
ered as “suspensions with a zero-filtration coefficient”. The goal of
the comparison is to find out which mechanisms incorporated in
the model are necessary in order to reproduce the experimental
results successfully: either temporal dispersion of particle flights
or distribution of filtration coefficients, or both of them.

The paper is organized as follows. Section 2 introduces the
integral model incorporating the elliptic equation in connection
with non-Fickian transport in heterogeneous porous media and the
distributed filtration coefficients in connection with particle popu-
lation heterogeneity. Section 3 presents the results of the numerical
modeling, to study how various factors influence the breakthrough
curves and the deposition profiles. Section 4 describes a compari-
son of the results from different models to the experiments carried
out with the different porous media, to study which model is proper
under which experimental conditions. Finally, the conclusions are
drawn.

2. Modeling

2.1. Elliptic equation

It has been suggested in Refs. [6–8] that transport of a dilute
monodisperse suspension in a porous medium may be described
by an elliptic equation accounting for particle advection, spatial
dispersion, temporal dispersion, mixed dispersion, and deposition.
The temporal dispersion represents the effects of the distributed
residence time of the particles in various pores. This is a simple way
to formalize the Continuous Time Random Walk (CTRW) approach,
where dispersion of a time step is usually expressed by means of a
distribution kernel [4,5]. It has been shown [6,7] that in the limit of
infinitely many infinitely small time steps and a finite variance of
a single step, the distribution may be represented by the two coef-
ficients Dt, Dxt (for temporal and mixed dispersion), and instead of
the convolution with the distribution kernel, it is enough to con-
sider the terms with the second time derivative and with the mixed
derivative, making the transport equation elliptic.

In this work we study the application of the elliptic formal-
ism to filtration of the diluted suspensions of particles, which are
normally applied in the experiments. Since the suspended concen-
trations in the reported experiments are fairly low to influence the
pore structure, this influence is neglected. The mixed dispersion
is also neglected, since it has no qualitative influence on the pro-
files. In order to reveal the heterogeneity of the particle population
the particles are split into portions, i.e. there are multiple equa-
tions representing different particle species with various filtration
coefficients. Under these conditions, the suspended concentration
ci(x,t) and the deposited concentration si(x,t) of the ith component
of the suspension at column depth x and time t are modeled by the
elliptic equation with a sink term representing the deposition of
the particles:

∂ci

∂t
+ vi

∂ci

∂x
= Dx

∂2ci

∂x2
+ Dt

∂2ci

∂t2
− �ici (1)

After this equation has been solved the deposition of the parti-
cles of the ith type may be found by integrating

∂si

∂t
= �iciϕ (2)
Summation of si gives the total deposition at a given time.
In Eqs. (1) and (2), vi is the interstitial particle velocity, Dx is the

spatial dispersion coefficient, Dt is the temporal dispersion coef-
ficient, which by definition is the second moment of the particle
residence time divided by the first moment of the particle residence
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ime to zero, �i is the filtration coefficient of the ith species of the
articles, and ϕ is the bed porosity. The suspended concentration
as the dimension of the number of particles per pore volume and
he retention concentration of the number of particles per unit vol-
me of the porous medium. For convenience of comparison to the
xperiments, the following practical quantities are often adopted:
c is the number of the retained particles per gram of dry porous
edia, and Nt the total number of injected particles [10,19,25].

Nc =
N∑

i=1,2,3,...

si

�b
;

Nt = c0t0v;

here �b is the bulk density of the dry porous media, t0 is the
article injection duration, and c0 is the influent concentration. In
imensionless coordinates the elliptic equation for the ith particle
pecies takes the form [8]:

∂Ci

∂T
+ u

∂Ci

∂X
= uRxi

∂2Ci

∂X2
+ Rti

u

∂2Ci

∂T2
− �iCi (3)

∂Si

∂t
= �iCiϕ (4)

here the following substitutions are introduced to the system:

= LX; t =
(

L

v0

)
T; ci = Cic0; si = Sic0; v = uv0;

xi = Dxi

v0L
; Rti = Dtiv0

L
; �i = �iL

v0
;

Here Rxi is the dimensionless longitudinal dispersivity and Rti
s the dimensionless temporal dispersivity of the ith component.
he value of L is the reference length (m), v0 is the reference veloc-
ty (m/s), and c0 is the reference concentration. The inverse Peclet
umber Rxi describes the magnitude of the spatial dispersion com-
ared to the product of the reference velocity and the reference

ength, while the similar parameter Rti describes the magnitude of
he temporal dispersion compared to the reference time.

.2. Distributed filtration coefficients

The log-normal distribution, the power law distribution and the
imodal distribution are commonly adopted to reflect the particle
opulation heterogeneity [15,24,26–28]. The probability density
unction (PDF) for the log-normal distributed filtration coefficients
s of the following form:

(�i) = 1

�i�
√

2

exp

[
(ln �i − �)2

2�2

]
(5)

here � and � are the mean and the standard deviation of the
atural logarithm of the filtration coefficients. The power law dis-
ribution takes the form:

(�i) = a(�i)
−b, �i ∈ [�min, �max] (6)

here a and b are two positive constants controlling the shape
f the distribution. The larger b the more asymmetric PDF curve.
onstant a is selected so that the sum of the probabilities of appear-
nce of the different values of � is equal to unity (the value of
� = �i − �i−1 is selected to be constant):

= 1
(7)
∑N

i=1,2,...(�i)
−b

The limitation [�min, �max] is necessary, since otherwise the
ntegral of the distribution is divergent on [0,∞]. In accordance with
revious works, the distribution is selected so that the integral is
ring Journal 162 (2010) 974–988

divergent at infinity, and so that dependence on the upper limit of
integration becomes important.

Discrete binary filtration coefficients reflecting heterogeneity
of a particle population are proposed in several studies [26–28].
This type of distribution is adopted to model the following case
scenarios. Under unfavorable surface conditions, the colloid depo-
sition can be classified into two categories: the unhindered particle
deposition into a relatively deep secondary energy well (fast) and
the particle deposition overcoming an energy barrier to reach the
primary energy minimum [10,14]. Here a bimodal distribution con-
sisting of two normal subdistributions is adopted and takes the
following form:

p(�i) = flow
1

�low

√
2


exp

[
−1

2

(
�i − �low

�low

)2
]

+ fhigh
1

�high

√
2


exp

[
−1

2

(
�i − �high

�high

)2
]

(8)

where �low and �high are the mean filtration coefficients of the
two normal subdistributions,� low and � low are the corresponding
standard deviations, and flow and fhigh are the fractions of the total
population associated with each subdistribution.

In the following computations, it is assumed that the intersti-
tial velocities of the particles of various sizes are the same. They
may either be approximated by the average pore velocity, or need
to be fitted to the experimental results. On the contrary, the filtra-
tion coefficients may be different. To approximate the continuous
distribution of them, the particle population is simply discretized
into 1000 representative species, each of which is assigned a single
filtration coefficient. The proportion of each species is calculated
in accordance with the continuous expression. However, the sum
of the proportions is not unity, due to a local truncation error and
a truncation of � close to infinity. It is then normalized by divid-
ing the sum by itself. The procedure needs two artificial values: the
minimum and the maximum of the filtration coefficients. This is
especially related to the power distribution, as discussed above.

2.3. Boundary conditions

The adopted boundary conditions here are ad hoc for the sys-
tem of elliptic equations. There are four boundary conditions in the
space-time plane: the initial condition (9), the terminal condition
(10), the inlet condition (11), (12), and the outlet condition (13):

Ci(X, 0) = 0 (9)

Ci(X, �T0) = 0 (10)

Ci(0, T) = 1, 0 < T < T0 (11)

Ci(0, T) = 0, T0 ≤ T ≤ �T0 (12)

dCi

dX

∣∣∣
X=1

= 0 (13)

This is rather different from the boundary conditions for the
parabolic ADE, in that the second derivative in the temporal disper-
sion term here requires an additional temporal boundary condition.
The details are discussed in Ref. [8].

The four boundary conditions are selected to model column
experiments in most labs. Before the injection the column is often
flooded with pure water to make the bed clean. Thus, condition (9)

reflects absence of suspended particles in the bed prior to flooding.
The influent concentration is set to be constant during the particle
injection time T0 (boundary condition (10)). Pure water is injected
after the suspension injection, so that all the suspended particles
are flushed out of the system (boundary condition (12)). The value
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is selected so that after �T0 the suspended concentration is effec-
ively zero, hence, the final condition (10). Our computations show
hat any value of � ≥ 5 provides the same shape of solutions.

.4. Degree of hyperexponentiality

In order to quantitatively describe the degree of hyperexpo-
entiality in the deposition profiles, the following definitions are

ntroduced. Providing that the dimensionless retained particle con-
entration is a function in terms of dimensionless X, S(X) and the
eposition is monotonically decaying with X, S′(X) ≤ 0, the degree
f the hyperexponentiality is

H = max[d(ln S)/dX] − min[d(ln S)/dX]
max[d(ln S)/dX]

(14)

The values of DH are listed in the tables reflecting the results of
he computations.

.5. Implementation

Direct discretization of Eqs. (3) and (4) by a finite difference
ethod results in a system of linear algebraic equations for each

oint on a rectangular grid. A center difference regime is adopted to
chieve accuracy of second order, O(�X2) and O(�T2). The compu-
ation is implemented in MATLAB, utilizing its fast implementation

f the matrix operations [29]. To achieve higher accuracy the mesh
rid is set to be 1000 × 1000. In the calculations sparse matrices are
dopted for the purpose of memory optimization and fast compu-
ation [30]. In order to demonstrate the reliability of the program,
calculation is performed with the same configurations as those

ig. 1. Breakthrough curves and deposition profiles with log-normal distribution of filt
ispersion.
ring Journal 162 (2010) 974–988 977

in Refs. [7,15]. Especially, Dt is set to be zero and for the dis-
tribution the number of particle species is 1000 to achieve high
accuracy. The numerical solution highly agrees with the analyt-
ical solution for the unsteady state in Ref. [15], with an average
difference of 0.1%. In order to fit the experimental breakthrough
curves, the dispersion coefficients and the filtration coefficients
are modified manually. Predicted deposition profiles can then be
compared to the experimental observations. Especially for the dis-
tributed filtration coefficients further adjustments are needed to fit
the hyperexponential deposition profiles.

3. Results of numerical modeling

The goal of this section is to find out which parameters have
most influence on the shapes of the deposition profiles and
breakthrough curves. First, a number of computations have been
performed with the ADE and the different distributions for �. Next,
the results of the elliptic modeling have been obtained and the
effects of the temporal dispersion on the breakthrough curves and
deposition profiles have been studied. Finally, the combined influ-
ences of both the temporal dispersion and the distribution of �
have been studied.

3.1. ADE with distributed �
Calculations are first performed without the temporal dis-
persion but only with the distributed filtration coefficients. The
log-normal distribution, the power law distribution and the
bimodal distribution are the adopted three types of distributions.

ration coefficients, (a) and (b): large spatial dispersion; (c) and (d): small spatial
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Table 1
Parameters adopted for calculations with the log-normal distribution of filtration
coefficients and resulting degrees of hyperexponentiality. Results are shown in Fig. 1.

�/� � (×103) Rx DH

1219 2.4 3−1/30−1 69.03/45.41
−1 −1

R
p
d

t
v
R
e
F
r
i
n
n

(
a
e
�
l
s

Table 2
Parameters adopted for calculations with the power law distribution of filtration
coefficients and resulting degrees of hyperexponentiality. Results are shown in Fig. 2.

�/�min � (×103) Rx b DH

26,754 574,821 3−1/300−1 0.80 136,320/200,920
−1 −1

F
d

2032 4.0 3 /30 193.23/724.23
2845 5.6 3−1/30−1 362.54/1076.01
3658 7.2 3−1/30−1 488.91/1088.23

esults under the condition of both large and small spatial dis-
ersion are compared for the calculations with the log-normal
istribution and the power law distribution.

For the log-normal distribution the mean value of the filtra-
ion coefficients is kept constant, while the standard deviations
ary. Other invariable parameters are:� = 1.97, T0 = 1.25PV, u = 1,
t = 0, Rx = 1/30, �min = 2 × 10−3, �max = 394. The rest of the param-
ters adopted in the calculations are shown in Table 1. As seen in
ig. 1, the results show that the log-normal distribution of � gives
ise to hyperexponential deposition profiles, but only has a minor
nfluence on the breakthrough curves. The degree of hyperexpo-
entiality is limited. Even extremely large standard deviations do
ot produce extremely hyperexponential profiles.

For the power law distribution, different values of power b
see Eq. (6)) are chosen to vary the distribution. The maximum
nd the minimum of the distribution are kept constant. For differ-

nt calculations: T0 = 1.25PV, u = 1, Rt = 0, Rx = 1/30, �min = 2 × 10−3,
max = 1968. The rest of the parameters adopted for the calcu-

ations are shown in Table 2. As seen in Fig. 2, the results are
imilar to the log-normal distribution: the power law distribution

ig. 2. Breakthrough curves and deposition profiles with power law distribution of filt
ispersion.
1871 3682 3 /300 1.20 26,824/1420
133 263 3−1/300−1 1.60 19,969/28.35

9 20 3−1/300−1 2.00 1.03/1.08

of � results in hyperexponential deposition profiles, but only has
a minor influence on the breakthrough curves. The distributions
with the larger standard deviations yield higher hyperexponen-
tiality. A larger standard deviation reflects a higher heterogeneity
of the particle population. This confirms that one of the reasons
for hyperexponential deposition profiles may be heterogeneity of
the particle population [10,24]. The degree of hyperexponentiality
with the power law distribution of � is generally higher than with
the log-normal distribution of �.

Calculations with the different maxima and minima of the
power distribution �min, �max have also been carried out. Results
(not given here) show that the minimum of the distribution
does not affect much the degree of hyperexponentiality, but still
may slightly change the shape of a deposition profile. Increasing
the maximum of the distribution mainly increases the retained
concentration close to the inlet; therefore the degree of the hyper-

exponentiality also increases.

For the bimodal distribution, the fractions and the standard
deviations of the two groups are set to be equal at first. For differ-
ent calculations: T0 = 1.25PV, u = 1, Rt = 0, Rx = 1/30, �min = 2 × 10−3,

ration coefficients, (a) and (b): large spatial dispersion; (c) and (d): small spatial
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Table 3
Parameters adopted for calculations with bimodal distribution of filtration coeffi-
cients and resulting degrees of hyperexponentiality. Results are shown in (a) and
(b) of Fig. 3.

�high/�low �high �low DH

1.00 1.20 1.20 0
67.33 80.80 1.20 35.35

�
e
�
�
i
o
t

t
l
�
t
d
f
w
h
F
s

Table 4
Parameters adopted for calculations with bimodal distribution of filtration coeffi-
cients and resulting degrees of hyperexponentiality. Results are shown in (c) and
(d) of Fig. 3.

fhigh/flow fhigh flow DH

0 0 1.00 0
1/3 0.25 0.75 13.92
1 0.50 0.50 14.69

F
o

133.67 164.40 1.20 54.71
200.00 240.00 1.20 69.36

max = 1968, �high = 1.2, � low = 1.2, fhigh = 0.5. The rest of the param-
ters are shown in Table 3. First, �low is kept constant and various
high is selected. The influence of the difference between �high and
low is seen in Fig. 3(a) and (b). The profile may be split roughly

nto two almost “exponential” parts, with the different inclinations
f the decay. With increasing difference between �high and �low,
he deposition profile becomes more hyperexponential.

Then �high and �low are kept constant, and various fractions of
he two species are selected. The selected parameters for the calcu-
ations are: �high = 24, �low = 1.2, T0 = 1.25PV, u = 1, Rt = 0, Rx = 1/30,

min = 2 × 10−3, �max = 1968, �high = 1.2, � low = 1.2 and the rest of
he parameters are given in Table 4. When the fractions of the
ifferent particles vary from fhigh = 0, flow = 1 to fhigh = 1, flow = 0, i.e.
rom the single component with low � to the single component

ith high �, the deposition decay changes from exponentiality to
yperexponentiality, and then to exponentiality again, as seen in
ig. 3(d). Thus, hyperexponentiality is observed in the systems with
ignificant amounts of particles of different sizes, as in Refs. [10,24].

ig. 3. Breakthrough curves and deposition profiles with bimodal distribution of filtration
f �high . (c) and (d) Keeping �low , �high and the standard deviations, change of flow , fhigh .
3 0.75 0.25 14.94
Inf 1.00 0 0

As seen in Fig. 3(d), the part of the deposition profile close to
the inlet is formed by the particles with high �. The rest of the
profile by the particles with low �. The regions of dominance of
the two species depend on the ratio fhigh/flow. For high values of
fhigh/flow the particles with high values of � remain close to the
inlet, while the particles with low � travel further, close to the
outlet. The resulting deposition profiles look like a combination of
the two straight-linear intervals, respectively, corresponding to the
high and the low values of �.

Unlike the log-normal distribution and the power law distri-
bution, the bimodal distribution of filtration coefficients highly
influences the breakthrough curves, as seen in Fig. 3(a).

In summary of the above results, the distribution of � can give

rise to highly hyperexponential deposition profiles if the standard
deviations are very large. Similar phenomena have been observed
in Refs. [15,24]. Such a wide distribution of filtration coefficients
may be doubted for the systems of similar particles. Therefore, the

coefficients. (a) and (b) Keeping the fractions, standard deviations and �low , change
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Table 5
Parameters adopted for calculations with elliptic equation and a single filtration
coefficient and resulting degrees of hyperexponentiality. Results are shown in Fig. 4.

Rx Rt DH

3/300−1 0 0/0

q
w
(
h

3

p
c
�
o
t

h
e
e
e
s
h
h

Table 6
Parameters adopted for illustration of the distribution of filtration coefficients, com-
pensated for by temporal dispersion. Results are shown in Fig. 5.

�/�min Rt b

171 8.9286 1.1
93 8.9286 1.3
14 8.9286 10

or compensated for by each other.
3/300−1 22.00 155.56/6.17
3/300−1 44.00 153.27/6.95
3/300−1 66.00 154.39/6.71

uestion arises, whether the temporal dispersion, in combination
ith somehow narrower distributions of the filtration coefficients

or, even, with a single filtration coefficient), may also result in a
yperexponential deposition profile.

.2. Elliptic equation with a single �

Let us now present the results with Dt > 0. The calculations are
erformed for a suspension characterized by a single filtration
oefficient. The values used for the calculations are T0 = 5PV, u = 1,

= 0.49 and the rest of the values are shown in Table 5. The effects
f the temporal dispersion both on the breakthrough curves and
he deposition profiles are illustrated in Fig. 4.

As seen from the figure, temporal dispersion not only leads to
yperexponentiality of the deposition but also has a clear influ-
nce on the breakthrough curves. The delayed peaks and large
nding tails are characteristic of the elliptic dispersivity. Similar

ffects have been observed in nature and in the experiments with
tochastically heterogeneous porous media [4–8,31]. The degree of
yperexponentiality caused by temporal dispersion, on the other
and, is relatively limited.

Fig. 4. Breakthrough curves and deposition profiles with a single filtration coefficie
171 4.4643 1.1
93 9.8214 1.3
14 11.1607 10

The temporal dispersion works in combination with the spatial
distribution. As seen in Fig. 4(a) and (c), large spatial dispersion may
partly compensate for some influence of the temporal dispersion
on the breakthrough curve. This unusual phenomenon is opposite
to the effect of the spatial dispersion in absence of the temporal
dispersion. On the other hand, it enhances the hyperexponentiality
caused by the temporal dispersion in the deposition profiles.

3.3. Elliptic equation with distributed �

As seen from the results above, both the temporal dispersion
and the distribution of the filtration coefficients give rise to the
deposition hyperexponentiality. This section focuses on how the
two factors in combination affect the breakthrough curves and the
deposition profiles, and whether their effects can be complemented
As an example, a system with power law distributed filtration
coefficients has been studied. In the calculations: T0 = 2.17PV, u = 1,
Rx = 1.79, �min = 0.896, �max = 1344, and the rest of the parameters
are shown in Table 6. In the first series of computations, power b

nt, (a) and (b): large spatial dispersion; (c) and (d): small spatial dispersion.
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conditions. The porous media range from the most homogeneous
porous media, e.g. packed glass beads, to the most heterogeneous
porous media, e.g. natural aquifer material. Since tracers may be
considered as suspensions not exhibiting deposition, the experi-
ments with them are also considered.

Table 7
Parameters adopted for illustration of temporal dispersion, compensated for by the
distribution of filtration coefficients. Results are shown in Fig. 6.

�/�min Rt b

291 4.4643 0.89
ig. 5. Illustration of the distribution of filtration coefficients compensated for by t
ith constant temporal dispersion. (c) and (d) Decrease of the standard deviation o

n the distribution is increased to reduce the standard deviation,
nd the minimum and maximum of the filtration coefficients are
ept constant. It causes the deviations both in the breakthrough
urves and the deposition profile, as seen in Fig. 5(a) and (b). Then
he temporal dispersion is increased to compensate for loss of the
istribution width. The breakthrough curves are recovered, but the
eposition profiles still deviate, as seen in Fig. 5(c) and (d). Thus,
he influence of the distribution of � on the breakthrough curves
an be well compensated for by temporal dispersion, but that on
he deposition profiles cannot.

A possibility of opposite compensation was also checked. Under
he above conditions, the parameters are modified according to
able 7. With increased temporal dispersion and invariable distri-
ution of �, the deviation in the deposition profile, was minor but
he BTC deviated significantly, as seen in Fig. 6(a) and (b). Then
he standard deviation of the distribution is decreased to compen-
ate for the increased temporal dispersion. The BTC was recovered,
ut the deposition profiles still deviated (Fig. 6(c) and (d)). This

ndicates that the influence of the temporal dispersion can be com-
ensated for by the distribution of the filtration coefficients to some
xtent, but not entirely.

Selection of more flexible distributions and fitting multiple
arameters might, of course, lead to complete compensation for
he effect of temporal dispersion. However, these calculations show

hat, at least, the three distributions considered above provide
reakthrough curves and deposition profiles possessing individual
eatures, which may be different from the features of the pro-
les produced by non-zero temporal dispersion. They are clearly
istinguishable, and interaction between them may contribute to
poral dispersion. (a) and (b) Decrease of the standard deviation of the distribution
istribution with increasing temporal dispersion.

better reproduction of the results. Especially breakthrough curves
are affected. The cases of clearly dispersed breakthrough curves
require introduction of temporal dispersion for fitting, while the
cases where the breakthrough curves are not dispersed, but the
deposition profiles are hyperexponential, require fitting with the
distributed filtration coefficients alone.

4. Comparison with experiments

In this section the results of various modeling methodologies
are compared to the experiments carried out with the different
porous media reported in the literature. The purpose is to find out
which modeling methodology is proper under which experimental
291 6.6964 0.89
291 8.9286 0.89
291 4.4643 0.89
171 6.6964 1.1

43 8.9286 10
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ig. 6. Illustration of the temporal dispersion compensated for by the distribution
tandard deviation of the distribution. (c) and (d) Increase of the temporal dispersio

.1. Colloid in uniformly packed glass beads

In this subsection the results of numerical modeling are
ompared with the experiments carried out with artificial homo-
eneous porous media. Tufenkji and Elimelech [10] conducted
olumn experiments on filtration of uniform polystyrene latex col-
oid suspension in packed soda-lime glass beads. The particles
orming glass beads were of a uniform size and much larger than
he colloid particles. A low influent concentration was adopted in
rder not to influence the pore structure. The solution chemistry
as strictly controlled.

Calculations with the integral model are performed so as to
eproduce the experimental results. The breakthrough curves pre-
icted by the ADE and the experimental breakthrough curves highly
gree with each other. Their shapes are almost not “washed-out”
y dispersion. Therefore, it is reasonable to try modeling the exper-

mental results by introducing the distribution of the filtration

oefficients. Selection of the � distribution types for fitting the
xperiments follows a practical principle: few parameters to tune
he shape of the distribution. Since the log-normal distribution
annot, apparently, provide significant deviations from the expo-

able 8
arameters adopted for calculations in comparison with the experiments of Tufenkji and
esults are shown in Fig. 7.

Methodology Rx (×10−3) Rt (×10−3)

ADE + single � 4.17/4.17 0
ADE + distributed � 4.17/7.93 0
Elliptic + single � 1.59/1.59 5.15
Elliptic + distributed � 1.59/1.59 3.43
ation coefficients. (a) and (b) Increase of the temporal dispersion and keeping the
h decreasing standard deviations of the distribution.

nentiality of the deposition profiles observed in the experiments,
it is not used for fitting. The bimodal distribution may seem to be
physically reasonable for some cases [10], but there are as many as
five parameters to be modified. The power law distribution with
only three parameters to be modified is chosen due to its practi-
cal convenience in the computations. A similar choice was made in
Ref. [15]. Because most of the power law distribution concentrates
close to the minimum of the filtration coefficient, it is an important
parameter as well as power b in Eq. (6).

Detailed parameters for the calculations are shown in Table 8.
As seen in Fig. 7(b) and (d), after fitting the breakthrough curves,
both the ADE with a single � and the elliptic equation with a
single � predict (almost) exponential deposition profiles. The rea-
son is the limitations on the variation of the temporal dispersion
coefficient Rt caused by limited dispersion of the breakthrough
curves. Meanwhile, the experimental results show that even for
these monodisperse colloid suspensions the deposition profiles are

hyperexponential. The results of the previous section indicate that
the distribution of � may not be fully reflected by the shape of the
breakthrough curves; therefore the properties of the distribution
need to be fitted to the deposition profiles. The results show that

Elimelech [10], corresponding to ionic strengths of 200 mM/100 mM respectively.

�min (×10−2) �max (×10−2) b

47.20/8.74 47.20/8.74 –/–
33.00/2.04 9102/955.71 1.90/1.50
45.50/8.74 45.5/8.74 –/–
34.97/2.04 9557.10/955.71 1.90/1.50
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ig. 7. Numerical modeling results compared with the experimental data of Tufenk
aw distribution is adopted.

he ADE with distributed filtration coefficients is sufficient to fit
oth the breakthrough curves and the hyperexponential deposi-
ion profiles. The fitted temporal dispersion in the elliptic equation
s not large enough to yield a clearly hyperexponential deposition
rofile. Imposing a larger temporal dispersion would result in pro-
ibitive modification of the breakthrough curve. The fact that the
ispersion is not large is probably attributed to a high degree of
omogeneity of the porous medium used for the experiment.

It should be remarked that the distribution of the filtration
oefficients turns out to be rather wide, in spite of the apparent
omogeneity of the particle population, as was also observed in
ef. [10]. The reason for the hyperexponentiality in this case is
xplained by the authors to be the presence of repulsive DLVO inter-
ctions. Under the unfavorable surface attachment conditions, the
articles overcoming energy barriers to reach the primary energy

inimum deposit slower, while others deposit faster. Such het-

rogeneity of interactions between the particles and the porous
edium is the direct cause of the hyperexponential deposition

rofile. The same authors also managed to apply the ADE with a

able 9
arameters adopted for modeling in comparison with experiments of Bradford et al. [19]

Methodology Rx (×10−3) Rt (×10−3)

ADE + single � 6.98/4.07/0.78 0/0/0
ADE + distributed � 7.75/8.13/7.03 0/0/0
Elliptic + single � 4.98/4.07/0.78 1.80/4.40/7.10
Elliptic + distributed � 7.75/8.13/7.03 0.35/0.44/0.36
Elimelech [10]. (a) and (b) ADE modeling; (c) and (d) elliptic modeling. The power

bimodal distribution of filtration coefficients to fit the experiments
under similar conditions in Ref. [32].

4.2. Colloid in uniformly packed sand

The next experimental study considers suspension flow in a,
apparently, more heterogeneous porous medium. Bradford et al.
[19] adopted yellow–green fluorescent latex microspheres as col-
loid particles and packed Ottawa sand (99.8% quartz) as porous
media for the column experiments. The sand particles were ran-
domly shaped but uniformly sized and much larger than the colloid
particles. As in the previous experiments, a low influent concentra-
tion was adopted in order not to influence the pore structure, and
the solution chemistry was strictly controlled.
A number of calculations are carried out, trying to reproduce
the results of Bradford et al. with the complete model involving the
filtration coefficients distribution and the temporal dispersion. The
common parameters in the calculations were u = 1, �max = 1400.
The rest of the parameters are given in Table 9. As seen in Fig. 8, for

, in sequence: dc/d50 = 0.008/0.013/0.020. Results are shown in Figs. 8 and 9.

�min (×10−2) �max (×10−2) b

0.42/1.70/2.52 0/0/0 –
0.31/1.36/2.24 137.54/203.14/268.80 1
0.42/1.70/2.52 0/0/0 –
0.31/1.36/2.24 137.54/203.14/268.80 1
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Fig. 8. ADE modeling results compared with S. Bradford’s experimental data [19] with homogeneous porous media. The power law distribution is adopted.

Fig. 9. Elliptic modeling results compared with Bradford’s experimental data [19] with homogeneous porous media. The power law distribution is adopted.
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ig. 10. Schematic illustration of the experiment conducted by Bradford et al. [25],
he sand lens of 710 �m is in the center, and the sand matrix of 360 �m is outside.

hese monodisperse colloid suspensions the experimental depo-
ition profiles are hyperexponential. Although the breakthrough
urves are more dispersed than in the previous set of the experi-
ents, the dispersion is still relatively mild.
The distribution of � gives rise to hyperexponential deposition

ecay in compliance with the experimental observations. It should
e noted, however, that the applied distribution is rather wide,
hich does not look fully realistic for a monodisperse suspension.

The experiment has also been simulated with a monodisperse
uspension (a single value of �), but with a non-zero temporal dis-
ersion. As seen in Fig. 9(a) and (c), the temporal dispersion fitted
o match the observed breakthrough curves is still not large enough
o predict clearly hyperexponential deposition profiles. The homo-
eneity of the porous media used in the experiments is likely to
ead to Fickian transport with moderate temporal dispersion coeffi-
ients. The experimental results with homogeneous porous media
an neither confirm the existence of nor the influence of tempo-
al dispersion. On the contrary, the ADE with distributed filtration
oefficients suffices to predict both the breakthrough curves and
he deposition profiles. The best-fit parameters for the different
ays of modeling are summarized in Table 9.

The DLVO calculations and the torque analysis by the authors
f Ref. [19] show that the experimental conditions are also unfa-
orable for the surface attachment. The main mechanism of particle
eposition is straining by design. Effects of straining are observed to
e influenced by the grain sizes, grain shapes, hydrodynamics and
olution chemistry. The heterogeneity of these factors is likely to
ause the deposition hyperexponentiality. Compared to the exper-
ment by Tufenkji and Elimelech [10], the authors adopted a more
eterogeneous porous medium which gives rise to higher hetero-
eneity of particle-medium interactions. It may also explain why
he degree of the deposition hyperexponentiality in this case is
learly higher. In Ref. [24], one of the same authors proposed a
tochastic model for deep bed filtration also applying the distribu-
ion of filtration coefficients (log-normal and bimodal).

.3. Colloid in non-uniformly packed sand

Since in relatively homogenous porous media temporal disper-
ion is not large enough to yield a hyperexponential deposition
rofile, comparison between the modeling and the experiments
ith highly heterogeneous porous media is of significance for the
resent study.

Bradford et al. [25] adopted carboxyl latex microspheres as col-

oid particles and Ottawa sand (99.8% quartz) as porous media for
he column experiments. The heterogeneous system consisted of
wo types of soil, a soil cylinder lens (2.6 cm diameter, 6 cm long)
mbedded in the center of a second soil referred to as the matrix
5 cm diameter, 10 cm long), as shown in Fig. 10. Median particle
Fig. 11. Numerical modeling result compared with experimental observations, with
the porous media approximated by three blocks in line.

sizes of the lens and the matrix were different. The chosen exper-
iment adopted sand consisting of particles of 710 �m as the lens
inside and sand of 360 �m as the matrix outside. A characteristic
size of a colloid particle was 3.2 �m.

The deposition profile in this experiment is hyperexponential.
Whether the hyperexponentiality is caused by temporal dispersion
or by the spatial distribution of the filtration coefficients, is to be
figured out.

In this experiment, the heterogeneity of the porous medium is
known in advance, and it is essentially two-dimensional. Mean-
while, only a single-dimensional simulator has been prepared in
this study. Therefore, two simplified representations of the porous
column have been adopted. The first representation approximates
the column as three blocks in line, as seen in Fig. 10. The side blocks
are “pure”, while the central block is “mixed”. The second approach
is, simply, to represent the column as a single block. In the latter
regime, the effect of the heterogeneity is only encoded in the tem-
poral dispersion term from the elliptic equation. The parameters
for the calculations are shown in Table 10.

As seen in Fig. 11, both the ADE modeling and the elliptic mod-
eling with the porous media approximated by three blocks are
able to produce hyperexponential deposition profiles. Hyperex-
ponentiality of the deposition is caused by spatial distribution of
the filtration coefficients. Unlike the ADE, the elliptic equation can

better describe the BTC, “catching” early arrival of the suspension
and the large ending tail in the breakthrough curve. The deposition
profile predicted by the ADE is composed of the three exponential
decays. Transitions between them are abrupt (especially, between
the first two cuts). The deposition profile predicted by the ellip-
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Table 10
Parameters adopted for ADE/elliptic modeling in comparison with the experiments
of Bradford et al. [25]. Results are shown in Figs. 11 and 12.

Upscaling regime Rx Rt �

Three blocks
Block 1 0.0033/1.00 0/22.27 1.33/0.85

t
s
t
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e
fi
e
T
p
o
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d
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F
t

Block 2 0.3333/13.33 0/0.05 0.61/0.57
Block 3 0.0033/13.33 0/22.27 0.61/0.85

Single block 0.10/4.00 0/25.03 1.80/2.94

ic equation also consists of the three parts, the first of which is
moother and is clearly hyperexponential. The transition between
he first two phases is much smoother.

The second approach, where the porous medium is considered
s a single block, is represented in Fig. 12. For this approach, the
lliptic model is able to produce a hyperexponential deposition pro-
le, while the ADE is not. Only the elliptic equation can catch the
arly arrival and the large ending tail on the breakthrough curve.
he degree of hyperexponentiality caused by the temporal dis-
ersion alone is not as high as the degree of hyperexponentiality
bserved in experiments or that obtained by the model of three
locks described above.

It can be deduced from the results above that, in this case, the
eposition hyperexponentiality is caused both by the spatial distri-

ution of the filtration coefficients and by the temporal dispersion.

t has not been possible to match the experimental results for this
ase as precisely as for previous cases, probably due to roughness
f the one-dimensional representation.

ig. 12. Numerical modeling result compared with experimental observations, with
he porous media approximated by a single block.
Fig. 13. Tracer injection in natural porous media. Numerical modeling results com-
pared with the experimental observations by Boggs et al. [23].

4.4. Tracer injection in natural porous media

In order to confirm the ability of the elliptic equation to model
non-Fickian transport in heterogeneous porous media, the mod-
eling results are compared with tracer injection experiments. The
physics of tracer injection is similar to that of the monodisperse
suspension flow in porous media with a zero-filtration coefficient.
The experiments described by Boggs et al. have been carried out
with natural aquifer material from a field site located at Colum-
bus Air Force base in northeastern Mississippi [23]. They adopted
a column with a diameter of 5.2 cm and lengths of 100 cm. Tracers
with tritium and calcium bromide were injected at a flow rate of
4.8 cm/day.

The breakthrough curves from the ADE and elliptic models are

compared with the experimental observations, as seen in Fig. 13.
The modeling parameters are summarized in Table 11. Compared
to the result of the ADE, the experimental breakthrough curve is
characterized by the delayed peak and the large ending tail. These
are the two distinguishing features of non-Fickian transport in het-

Table 11
Parameters adopted for ADE/elliptic modeling in comparison with the experiments
of Boggs et al. [23]. v is the tracer velocity, and vwater is the average pore water
velocity. Results are shown in Fig. 13.

Tracer Rx Rt v/vwater

Bromide 0.09/0.10 0/0.0518 0.90/0.73
Tritium 0.18/0.06 0/0.0544 0.80/1.00
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ig. 14. Tracer injection in porous media with uniform heterogeneity. Numerical m
22].

rogeneous porous media. Unlike the ADE, the elliptic equation
ucceeds in modeling the highly asymmetric breakthrough curve.
onetheless, the elliptic equation slightly overestimates the early
rrival of the tracer around the breakthrough. In addition, the tracer
elocity needs to be different from the average pore water veloc-
ty in order to fit the breakthrough curve successfully, as seen in
able 11.

It is also worth mentioning that, the parameters (velocity and
ispersion coefficients) used for fitting the two breakthrough
urves in the same porous medium are rather different in this case,
hile the parameters for fitting the experiments above and below

re similar. It indicates that, for not-so-strongly heterogeneous
orous media the parameters fitted to one experiment may be used
or simulating another experiment, while for highly heterogeneous
orous media they may not. It may be due to underestimating the
eally complicated physics in the natural porous media. Detailed
tudy of this question is beyond the scope of the present work.

.5. Tracer injection in porous media with uniform heterogeneity

Another experiment with heterogeneous media is carried out by
illiman and Simpson [22]. The experiment adopts an artificially
eterogeneous porous medium with a coarse sand matrix and a
umber of small boxes of fine sand inside. The sand boxes are placed
niformly. The degree of heterogeneity is probably lower than in
he experiments [23,25] modeled above.

The breakthrough curves from ADE modeling and elliptic mod-
ling are compared with experimental observations, as seen in
ig. 14. The modeling parameters are presented in Table 12. ADE
odeling is carried out with the best estimated parameters from

erkowitz and Scher [33]. Low temporal dispersion coefficients are
dopted in the elliptic equation. Unlike the ADE, the elliptic equa-
ion can model the long “tails” of the integral breakthrough curves.

owever, it overestimates early arrival of the tracer.

Summarizing the comparisons between the modeling and the
xperiments, a method for estimating the parameters in the model
ay be described as follows. Ellipticity of the model may be ruled

ut in the first place if the effluent concentration profile is clearly

able 12
arameters adopted for ADE/elliptic modeling in comparison with the experiments
f Silliman and Simpson [22]. Results are shown in Fig. 14.

Position from source Rx Rt

0.91 m 0.0879/0.0879 0/0.0291
1.37 m 0.0547/0.0547 0/0.0212
ng results compared with the experimental observations by Silliman and Simpson

stepwise. On the contrary, if this profile is smoothed, one may
expect non-zero elliptic dispersion. The distribution of the filtra-
tion coefficients may be ruled out if the deposition is exponentially
decreasing. For the case with a stepwise breakthrough curve and
hyperexponential deposition, the ADE with distributed filtration
coefficients is adequate. If ellipticity is nonzero, it may be suffi-
cient to predict moderate hyperexponentiality without introducing
distribution of filtration coefficients. The parameters for transport
can be fitted to the breakthrough curve alone and the distribution
of filtration coefficients (power law) can be fitted to the depo-
sition profile alone. On the other hand, for the experiment with
a widely dispersed breakthrough curve (early arrival, large tail)
and hyperexponential deposition, the temporal dispersion coeffi-
cient needs to be fitted to the breakthrough curve first, and then
the distribution is fitted to the deposition. After separate fitting of
the dispersion coefficient and the distribution to match different
curves, some “fine tuning” is required, to better match both curves.
It is because the deposition hyperexponentiality may be attributed
to both the temporal dispersion and the distribution of filtration
coefficients.

5. Conclusions

The experimental data and our computations indicate that
hyperexponentiality of the deposition can be caused by the fol-
lowing three mechanisms: particle population heterogeneity in
connection with the distribution of the filtration coefficients, mid-
scale heterogeneity in connection with non-Fickian transport,
and macroscale heterogeneity in connection with spatial distri-
bution of the filtration coefficients. The degree of “wash-out” of a
breakthrough curve indicates whether the elliptic formalism is nec-
essary. In cases where a breakthrough curve is (almost) stepwise
(which is commonly observed for artificial uniform porous media),
application of the elliptic formalism seems to be inadequate, and
hyperexponentiality of the deposition profiles, if observed, should
be caused by the explicit or implicit distribution of the parameters
of the particles in the suspension. In non-uniform porous media
the breakthrough curves may be more dispersed. For such cases
the elliptic transport equation, probably, coupled with the particle
distribution, seems to be more adequate.
The effects of the temporal dispersion and the distribution of fil-
tration coefficients can be compensated for by each other, but not
entirely. It implies that attributing the deposition hyperexponen-
tiality to particle population heterogeneity alone or non-Fickian
transport alone may be to overestimate this factor.
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